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Abstract

This paper deals with sets P of tiles (compact, convex sets) in R*. Tiles are a general-
ization of pixels or voxels (in R? or R®); they can have arbitrary shapes and are allowed to
overlap. The union of all the tiles of P is denoted by U(P). The neighborhood Np(P) of a
tile P is the union of the tiles of P that intersect P. P is called simple if deletion of P from
P does not change the topology (in the homotopy sense) of U(P). We show in this paper
that if P satisfies a property called strong normality (SN), and deletion of P preserves the
topology of Np(P), then P is simple. This may not be true if P is not SN; and even if P is
SN, P may be simple even if deletion of P does not preserve the topology of Np(P).
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1 Introduction

Let P be a set of compact (closed and bounded) convex sets in R"; the elements of P (which
correspond to pixels or voxels in conventional two- or three-dimensional digital images) will
be called tiles, and the union of all the elements of P will be denoted by U(P). P is called
locally finite if, for any P € P, the number of tiles that intersect P is finite. P will be called
strongly normal (SN) if it is locally finite and for all P, P, P,,---, P,(n > 1) € P, if each P,
intersects P and I = P, N P, N ---N P, is nonempty, then I intersects P. It is not difficult
to see that strong normality is hereditary: If it holds for P, it holds for every P’ C P.

The neighborhood of P in P, denoted by Np(P), is the union of all @ € P that intersect
P (including P itself). In [1] it is proved, for n = 3, that if P is SN, then for any P’ C P the
neighborhood Np/(P) of any P € P’ is simply connected—i.e., it cannot have a tunnel—and
has no cavities. The deleted neighborhood of P in P, denoted by Np,(P), is the union of all
Q # P € P that intersect P.

P € P is called simple if deletion of P from P does not change the topology (in the
homotopy sense) of U(P). In Section 2 of this paper we show that if P is SN and N3 (P) is
simply connected and without cavities, so that deletion of P from P preserves the topology
of Np(P), then P is simple. Thus in an SN set of tiles, preservation of local topology when
P is deleted is a sufficient condition for simplicity of P. (This need not be true in a non-SN
locally finite set of tiles, as we show in Section 3.) On the other hand, we show in Section 4
that even in an SN set of tiles, local topology preservation is not a necessary condition for
simplicity; if P satisfies certain not very restrictive conditions, a tile may be simple even if
its deletion fails to preserve topology in a “neighborhood” of any fixed size; thus preservation
of local topology when P is deleted is not a necessary condition for simplicity of P.

2 In an SN set of tiles, if deletion of a tile preserves local topology, it preserves
global topology

For any A > 0 and any subset S of R", the A-closure of a subset X of S in S, denoted
by closure(X,S,A), is defined as the set {p|p € S and é(p, X) < A}, where é(p, X) is the
Euclidean distance between p and the nearest point of X. The Hausdorff distance ég(S1, S2)
[2] between two sets Sy, 52 C R" is defined as max(max,es, 6(p, S2), maxyes, 6(p, S2)). Let
II(S) denote the power set of S. A continuous deformation ¢ in S from A to B (where
A,B C S) is a mapping o : [0,1] — II(S) such that ¢(0) = A, (1) = B, and for every
z,y € [0,1], as y approaches z, ég(o(z),o(y)) approaches zero. Such a deformation will
be called confined to X if, for every z,y € [0,1], (o(z) — o(y)) U (o(y) — o(z)) is a subset
of X. It will be called topology-preserving if, for all z,y € [0,1], as y approaches z, for all
p € o(z) — o(y) there exists a A such that, for all A’ < A, both closure (p,o(z),A’) and
closure(p, o(y),A’) are simply connected and without cavities.

Theorem 1 If P is SN, then for any P' C P, if P € P’ and Np,(P) is simply connected and
without cavities, the deletion of P from P’ does not change the topology (in the homotopy
sense) of U(P').




Proof: N3,(P)is simply connected without cavities, and it is contained in Np:(P), which
by SN is also simply connected and without cavities. Hence [3] there exists a topology-
preserving deformation o (a deformation retraction), confined to Np/(P) — N3.(P), that
takes Np/(P) into Np,(P). (Note that P may be contained in N3,(P), so that Np/(P) and
N3.(P) are the same, in which case ¢ is the identity mapping.) Let ¢’ be the mapping
defined by o'(z) = o(z) U (U(P’) — Np:(P)). It is not difficult to see that ¢’ is a continuous
deformation in U(P’) from U(P’) to U(P' — {P}) that is confined to Np,(P) — N3,(P).
Suppose ¢’ were not topology-preserving; then there would exist some z, y, in [0,1] such
that as y approaches z, there always exists a point p in ¢'(z) — ¢/(y) such that for every
sufficiently small A, one or both of closure(p, o'(z), A) and closure(p, o’(y), A) is not simply
connected and without cavities. But o'(z) — 0'(y) C o(z) — o(y), so that p € o(z) — o(y).
Since o is confined to Np/(P) — N3,(P), we thus have p € P. Since the Ps are compact
subsets of R", for a sufficiently small A, closure(p,U(P’) — Np/(P),A) is empty, so that
closure(p, o'(z), A) = closure(p, o(z),A) and closure(p, o'(y), A) = closure(p, o(y), A); this
contradicts the fact that o is topology-preserving. a

3 This need not be true in a locally finite set of tiles that is not SN

In this section we prove that the following inverse of Theorem 1 is also true: If P is a locally
finite set of tiles that violates SN, then there exist P’ C P and P € P’ such that N3,(P) is
simply connected without cavities, but the removal of P fails to preserve the topology (in

the homotopy sense) of U(P’).

Lemma 1 Let P be a tile in a locally finite set of tiles P. If Qy,Q2,-++,Qr is a minimal
set of neighbors of P in P that violates SN, then n is either 2 or 3.

Proof. See [1]. o

If k=2, PNQ; and PN Q; must be disjoint. If k =3, PN Q1N Q2, PN Q;N Q3, and
PN QsN ¢y must be nonempty and disjoint.

Theorem 2 Let P be a locally finite set of tiles that violates SN; then there exist P' C P
and P € P’ such that N3.(P) is simply connected without cavities, but the removal of P fails
to preserve the topology (in the homotopy sense) of U(P').

Proof: By Lemma 1, since P is not SN, there exists a set of two or three Q’s (neighbors of
some P € P) that violates SN.

Suppose first that this set has two elements Qq,Q2; let P' = {P,Q1,Q2}. Let C be a
closed curve in Np/(P) = PU QU Q) that passes through each of the intersections PN Q,,
PN Q; and Q; N Q;. It can be shown (see [1] for the details) that in Np:(P), C is not
reducible to a point; in other words, Np/(P) = PUQ; U Q> has a tunnel and so is not simply
connected. Let P" = {Q1,Q2}. P" is (trivially) SN, so that by [1], Np«(Q1) = Q1 U Q5 is
simply connected and without cavities; hence N3,(P) = Q; U Q; is simply connected and
without cavities. Thus 2/(P’) = Np:(P) is not simply connected, while/(P'—{P}) = N;,(P)




is simply connected and without cavities. Hence the removal of P from P’ fails to preserve
the topology of U(P').

Next, suppose the minimal set of ()’s that violates SN has three elements @, @2, @3. Let
P’ = {P,Q1,Q2, Q3}; since the @’s violate SN, their intersection must be nonempty, and
PNn@iNQ:, PNQ2NQs, and PN Q3N Q; must also be nonempty. Let p, ps, p1 and p, be
points in @1NQNQ3, PNQ1NQ2, PNQ2NQ3, and PNQ3NQ1, respectively, such that the
volume of the tetrahedron 7' defined by p, ps, p1 and p, is minimum. It can be shown (see
[1] for the details) that Np/(P) fails to occupy the entire interior of T, and that the interior
is surrounded by Np/(P); hence Np:/(P) has a cavity. Let P” = {Q1,Q2,@3}. Then P” is
SN, so that by [1], Nps(@1) = @1 U Q2U Q3 is simply connected and without cavities; hence
N3,(P) = @1 U Q2 U Qs is simply connected and without cavities. But U(P’) = Np:(P) has
a cavity, while U(P’' — {P}) = N3.(P) is simply connected and without cavities. Hence the
removal of P from P’ fails to preserve the topology of U(P’) O

Note that in Theorem 2, removal of P does not even preserve local topology, because
Np:(P) has a tunnel or a cavity, while N3,(P) is simply connected and without cavities.
Figure 1 shows an example in which both Np(P) and Np(P) are connected and have one
tunnel and no cavities (note that R is not in Np(P)), so that local topology is preserved by
removal of P, but global topology is not: U(P) has a tunnel, which is destroyed when P is
removed.

4 Deletion of a tile may preserve global topology even if it does not preserve
local topology

In this section we show that if P is SN and satisfies certain simple conditions, there can exist
tiles in P whose deletion preserves global topology, but does not preserve local topology in
a neighborhood of any fixed order. [For any natural number n and any tile P, we define the
nth-order neighborhood NZ(P) of P inductively by: N3(P) = P; N3(P) = {U(Q € P)|Q
intersects N3~'(P)}. We similarly define N5*(P) as the union of the tiles in N3(P) except
for P itself.] We will show in this section that there can exist tiles in P such that Ng* is
not topologically equivalent to N3. Thus local topology preservation in such a P is not a
necessary condition for global topology preservation.

A tile P will be called redundant in P if N;(P) contains P. P will be called irredundant
if no tile of P is redundant. We assume from now on that P is irredundant and SN.

Let Q1,...,Qn be tiles that intersect P, and let @ = U, Q:. Since P is irredundant, @
does not contain P.

Proposition 1. Q surrounds P iff it contains Boundary(P).

Proof: “If” is clear, since Boundary(P) surrounds P. Conversely, let z be a point of
Boundary(P) that is not contained in Q. Since tiles are closed sets, there is a point z’ of the
complement of P, close to z, that is still not contained in @ and is evidently still surrounded
by @. Thus 2’ is in the complement of P U @ and is surrounded by P U @, so that P U Q
has a cavity; but since P’ = {P,Q1,...,Qn} is SN, Np/(P) = P U Q cannot have a cavity,
contradiction. O
Note that since () surrounds P but does not contain P, some connected component of @ has
a cavity.




We say that @Q encircles P if P — @ is connected but Boundary(P) — @ is not connected.
[Note that analogously, in Proposition 1, P — @ is nonempty but Boundary(P) — @ is empty.
Evidently if Q surrounds P it cannot encircle P, and vice versa.]

Proposition 2. If ) encircles P, some connected component of @ has a tunnel.

Proof: Let z,y be points belonging to different components of Boundary(P) — Q. Then
there is a curve ¢ in QN Boundary(P) that separates z and y in Boundary(P). Since P — @
is connected, there is a path p from z to y in P — Q). Since tiles are closed sets, there exist
points z’,y’ in the complement of P, close to z and y, that are still not contained in Q.
Since P’ = {P,Q1,...,Qm} is SN, PUQ = Np:(P) has no cavity; hence z’ and y’ cannot
be surrounded by P U @ (since they are in the complement of P U (). Hence there is a path
p’ from z to y (via 2z’ and ') in the complement of P U (). The concatenation of p and p’ is
a curve d in the complement of Q. It is not hard to see that ¢ and d are linked; thus @ has
a tunnel. O

It is not hard to see that in Proposition 1 or 2, if m is minimal, () must be connected. Note
that since P’ = {P,Q1,...,Q@m} is SN, Np/(P) = PUQ has no tunnel. It is not hard to see
that if m is minimal, Boundary(P) — @ has exactly two connected components and () has
just one tunnel.

The distance d(P,Q) between two tiles P,Q is inf{d(z,y)|z € P,y € @}, where d is
Euclidean distance. We call P broad at P if P has at least two disjoint neighbors, and for
any two such neighbors Uy, V4, there exist sequences of tiles U3, Us,... and Vi, V3, ... such
that (1) U; is never a neighbor of Vj; (2a) U; is a neighbor of U; iff |{ — j| =1, and V; is a
neighbor of V; iff | — j| = 1; (2b) if any U;(V;) is adjacent to any neighbor @ of P, then
U; (W) is also adjacent to Q; (2¢) no U; or V; is contained in NE(P); (24) for any distance
D, there exist 7, j such that d(P,U;) > D and d(P,V;) > D. (This follows from (2c) if the
volumes of the tiles are bounded below.)

We call P broadly connected if, for any P and any D, if Pp, p is the result of deleting
from P all the tiles whose distances from P are at most D, then U(Pp, p) is nonempty and
connected. Evidently if P is broadly connected, it is connected and unbounded.

Let P be broad at P, and for any D, let Ujpy, Vjp) be the first U; and the first V;
such that d(P, Uypy) > D and d(P,Vjpy) > D. If P is broadly connected, there is a path in
U(Pp p) from Ujpy to Vjp). Let p be such a path that passes through as few tiles as possible,
say through Ujpy = W1,..., Wi = Vj(p); then W; and W; are neighbors iff e —j] <1, and
no W is a neighbor of any U; or V; for ¢ < ¢(D) or j < j(D). Thus the cyclic sequence of
tiles P,Us,...Uypy = Wh,..., Wi = Vjp),..., V1 is a digital simple closed curve; it is not
difficult to show that the union of these tiles is connected, has no cavities, and has exactly
one tunnel. Moreover, since U; and V) are not neighbors of each other, if P is deleted, this
curve becomes an arc: it is connected and has no cavities or tunnels.

The diameter §(P) of a tile P is sup{d(z,y)|z,y € P}, where d is Euclidean distance.
We will assume that the tiles of P have bounded diameters, i.e. that there exists a A such
that 6(P) < A for all P.

Theorem 3. Let P be broadly connected and broad at P, and let P have neighbors
@1,--.,Qm (where m is minimal) such that @ = U, @; encircles P, as well as another
neighbor R disjoint from ). Then for any n > 1, deletion of P from P’ does not preserve
the topology of NZ.(P), but does preserve the topology of U(P’).

4




Proof: Let P’ = {P,Q1,...,Qm,R = U1,...,Uypy = W1,...,Wi = Vjip),..., 1},
where V; is one of the Q’s, and where D > nA. Then N3, (P) is the union of P,Q,U,...,Un,
Va,..., Vs (note that V; C @), where n < ¢(D), j(D) since nA < D. Before P is deleted,
NZ,(P) is connected and has no tunnel or cavity. [Since R = U, is not a neighbor of any of
the Q’s, by (2b), no U; can be a neighbor of any of the Q’s. By (1), V’s are never neighbors of
U’s, and by (2c), no V; for j > 3 can be a neighbor of any Q. Let P" = {P,Q4,...,Qm, V2},
and let P"” be the set of Q’s that are neighbors of V;. Evidently, V; € P", and by (2b), every
tile in P™ is a neighbor of V;. Hence Npm(V4) = N3u(V2). But by SN, Npw (Vi) is simply
connected and without cavities; hence N3.(V3) is simply connected and without cavities.]

After P is deleted, N2/(P) is not connected (the U’s are not connected to the @Q’s,
although the V’s may be). Moreover, NZ7(P) has a tunnel, since ) has a tunnel, and none
of the tiles in NZF(P) can block this tunnel. [This is clear except possibly for V;. If a union
of tiles By, ..., By blocks the tunnel in @, every @); must be a neighbor of some B; (otherwise
there would exist a curve arbitrarily close to @; that avoids the B’s and is linked with the
curve contained in @). Thus the only tile in N37(P) that can block the tunnel in Q is V3,
and if it does so, it must be a neighbor of every @;. But by (2b), this implies that V; is
also a neighbor of every Q;, so that if we let P” = {Q1,...,@n}, then Nps(V1) = @ has
a tunnel; but by SN, Np+(V;) must be simply connected, contradiction.] Thus deleting P
does not preserve the topology of NZ,(P). On the other hand, Z(P’) is connected and has
a tunnel (but no cavity). When P is deleted, U(P' — {P}) is still connected (through the
W’s), and although it no longer has the tunnel defined by the digital simple closed curve,
it now has the tunnel in @ and it still has no cavity. Thus deleting P does preserve the
topology of U(P’). ]

It can be readily verified that all the conditions on P used in this section are satisfied by
standard tessellations such as the familiar cubic tessellation.

It is easy to give examples in which removal of P preserves global topology but not local
topology in the neighborhood of P. A simple example is shown in Figure 2; here Np(P) has
no tunnel but N3(P) has a tunnel, but globally, a tunnel exists both before and after P is
removed.

5 Concluding remarks

We have shown that in an SN set of tiles, if deletion of a tile preserves local topology, then
it preserves global topology; thus simple tiles can be characterized locally. This need not be
true in a non-SN set of tiles; and even in an SN set, a tile may be simple even if its deletion
does not preserve local topology. It would be of interest to find good characterizations of
simple sets of tiles, i.e., sets of tiles whose simultaneous deletion preserves global topology,
at least in the SN case.
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Figure 1: Removal of P preserves local topology but not global topology.




Figure 2: Removal of P preserves global topology but not local topology.
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